Boashash, B., and P. Black (1987). An efficient real-time implementation of the Wigner-Ville distribution, IEEE Trans. Acoust. Speech Signal Process. 35, no. 11, 1611–1618.

Bormann, P., and J. W. Dewey (2012). The new IASPEI standards for determining magnitudes from digital data and their relation to classical magnitudes, in New Manual of Seismological Observatory Practice 2 (NMSOP-2), Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, 1–44.

Cabieces, R., E. Buforn, S. Cesca, and A. Pazos (2020). Focal parameters of earthquakes offshore Cape St. Vincent using an amphibious network, Pure Appl. Geophys. doi: 10.1007/s00024-020-02475-3.

Cabieces R., Krüger, F., Garcia-Yeguas, A., Villaseñor, A., Buforn, E., Pazos, A., Olivar-Castaño, A.,Barco, J (2020) Slowness vector estimation over large-aperture sparse arrays with the Continuous Wavelet Transform (CWT): Application to Ocean Bottom Seismometers, Geophysical Journal International, ggaa427,

Cabieces, R., Villaseñor, A., Berg, E., Olivar-Castaño, A., Arnaiz, M., Ventosa, S & Ferreira, A (2022). Upper Lithosphere structure of northeastern Venezuela from joint inversion of surface waves dispersion and receiver functions. Solid Earth.

Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis, Proc. IEEE 57, no. 8, 1408–1418.

Clinton, J. F., and T. H. Heaton (2002). Potential advantages of a strong-motion velocity meter over a strong-motion accelerometer, Seismol. Res. Lett. 73, no. 3, 332–342.

Daubechies, I. (1992). Ten Lectures on Wavelets, Society for industrial and applied mathematics, doi: 10.1137/1.9781611970104.

Flinn, E. A. (1965). Signal analysis using rectilinearity and direction of particle motion, Proc. IEEE 53, no. 12, 1874–1876. Font, Y., H. Kao, S. Lallemand, C.-S. Liu, and L.-Y. Chiao (2004).

Hypocentre determination offshore of eastern Taiwan using the MaximumIntersectionmethod, Geophys. J. Int. 158, no. 2, 655–675.

Gal, M., A. M. Reading, S. P. Ellingsen, K. D. Koper, S. J. Gibbons, and S. P. Nasholm (2014). Improved implementation of the fk and Capon methods for array analysis of seismic noise, Geophys. J. Int. 198, no. 2, 1045–1054, doi: 10.1093/gji/ggu183.

Goldstein, P., D. Dodge, M. Firpo, and L. Minner (2003). SAC2000: Signal processing and analysis tools for seismologists and engineers, in The IASPEI International Handbook of Earthquake Engineering and Seismology, W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger (Editors), Vol. 81, Academic Press, London, United Kingdom, 1613–1620, doi: 10.1016/S0074-6142 (03)80284-X.

Goutorbe, B., D. L. de Oliveira Coelho, and S. Drouet (2015). Rayleigh wave group velocities at periods of 6-23 s across Brazil from ambient noise tomography, Geophys. J. Int. 203, no. 2, 869–882.

Havskov, J., P. H. Voss, and L. Ottemoller (2020). Seismological observatory software: 30 Yr of SEISAN, Seismol. Res. Lett. 91, no. 3, 1846–1852, doi: 10.1785/0220190313.

Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research, Seismol. Res. Lett. 84, no. 6, 1081–1088, doi: 10.1785/0220110096.

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment, Comput. Sci. Eng. 9, no. 3, 90–95, doi: 10.1109/MCSE.2007.55.

Jiang, C., and M. A. Denolle (2020). NoisePy: A new high-performance Python tool for ambient-noise seismology, Seismol. Res. Lett. 91, no. 3, 1853–1866, doi: 10.1785/0220190364.

Krischer, L., T. Megies, R. Barsch, M. Beyreuther, T. Lecocq, C. Caudron, and J. Wassermann (2015). ObsPy: A bridge for seismology into the scientific Python ecosystem, Comput. Sci. Discov. doi: 10.1088/1749-4699/8/1/014003.

Langston, C. A. (1979). Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res. 84, no. B9, 4749–4762.

Lecocq, T., C. Caudron, and F. Brenguier (2014). MSNoise, a Python package for monitoring seismic velocity changes using ambient seismic noise, Seismol. Res. Lett. 85, no. 3, 715–726.

Loeliger, J., and M. McCullough (2012). Version Control with Git: Powerful Tools and Techniques for Collaborative Software Development, O’Reilly Media, Inc, ASIN: 1449316387.

Lomax, A., and A. Curtis (2001). Fast, probabilistic earthquake location in 3D models using oct-tree importance sampling, Geophys. Res. Abstr. 3, 955.

Mallat, S. (2009). A Wavelet Tour of Signal Processing, Third Ed., Academic Press, Inc., USA, ISBN: 9780123743701.

McNamara, D. E., and R. P. Buland (2004). Ambiente noise levels in the continental United States, Bull. Seismol. Soc. Am. doi: 10.1785/ 012003001.

Nawab, S., F. Dowla, and R. Lacoss (1985). Direction determination of wideband signals, IEEE Trans. Acoust. Speech Signal Process. 33, no. 5, 1114–1122.

Nissen-Meyer, T., M. van Driel, S. C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, and A. Fournier (2014). AxiSEM: Broadband 3-D seismic wavefields in axisymmetric media, Solid Earth 5, 425–445, doi: 10.5194/se-5-425-2014.

Peterson, J. R. (1993). Observations and modeling of seismic background noise, U.S. Geol. Su\rv. Open-File Rept. 93-322, doi:10.3133/ofr93322.

Podvin, P., and I. Lecomte (1991). Finite difference computation of traveltimes in very contrasted velocity models: A massively parallel approach and its associated tools, Geophys. J. Int. 105, no. 1, 271–284.

Prieto, G. A., R. L. Parker, and F. L. Vernon (2009). A Fortran 90 library for multitaper spectrum analysis, Comput. Geosci. doi:10.1016/j.cageo.2008.06.007.

Ross, Z. E., M.-A. Meier, E. Hauksson, and T. H. Heaton (2018). Generalized seismic phase detection with deep learning, Bull.Seismol. Soc. Am. 108, no. 5A, 2894–2901, doi: 10.1785/0120180080.

Rost, S., and C. Thomas (2002). Array seismology: Methods and applications, Rev. Geophys. 40, no. 3, 2–27.

Ruigrok, E., S. Gibbons, and K. Wapenaar (2017). Cross-correlation beamforming, J. Seismol. 21, no. 3, 495–508.

Sambridge, M. (2013). A parallel tempering algorithm for probabilistic sampling and multimodal optimization, Geophys. J. Int. 196, no. 1, 357–374, doi: 10.1093/gji/ggt342.

Sambridge, M., and K. Mosegaard (2002). Monte Carlo methods in geophysical inverse problems, Rev. Geophys. 40, no. 3, 3–29.

Schimmel, M., and H. Paulssen (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks, Geophys.J. Int. doi: 10.1111/j.1365-246X.1997.tb05664.x.

Smith, W. S., Z. Zeng, and J. Carette (2018). Seismology software: State of the practice, J. Seismol. 22, no. 3, 755–788.

Silva, S., P. Terrinha, L. Matias, J. C. Duarte, C. Roque, C. R. Ranero, W. H. Geisslerh, and N. Zitellini (2017). Micro-seismicity in the Gulf of Cadiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults? Tectonophysics doi: 10.1016/j.tecto.2017.07.026. Stammler, K. (1993). S

SeismicHandler—Programmable multichannel data handler for interactive and automatic processing of seismological analyses, Comput. Geosci. 19, no. 2, 135–140.

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis, Proc. IEEE 70, no. 9, 1055–1096.

Torrence, C., and G. P. Compo (1998). A practical guide to wavelet analysis, Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1998) 079<0061:APGTWA>2.0.CO;2.

Vackář, J., J. Burjánek, F. Gallovic, J. Zahradník, and J. Clinton (2017). Bayesian ISOLA: New tool for automated centroid moment tensor inversion, Geophys. J. Int. 210, no. 2, 693–705, doi: 10.1093/gji/ggx158.

van Driel, M., L. Krischer, S. C. Stähler, K. Hosseini, and T. Nissen-Meyer (2015). Instaseis: Instant global seismograms based on a broadband waveform database, Solid Earth 6, no. 2, 701–717, doi: 10.5194/se-6-701-2015.

Ventosa, S., M. Schimmel, and E. Stutzmann (2017). Extracting surface waves, hum and normal modes: Time-scale phaseweighted stack and beyond, Geophys. J. Int. doi: 10.1093/gji/ggx284.

Wathelet, M., J. L. Chatelain, C. Cornou, G. D. Giulio, B. Guillier, M.Ohrnberger, and A. Savvaidis (2020). Geopsy: A user-friendly open-source tool set for ambient vibration processing, Seismol. Res. Lett. 91, no. 3, 1878–1889.

Zhou, H. (1994). Rapid three-dimensional hypocentral determination using a master station method, J. Geophys. Res. 99, no. B8, 15,439–15,455.

Zhu, L., and H. Kanamori (2000). Moho depth variation in southern California from teleseismic receiver functions, J. Geophys. Res. 105, no. B2, 2969–2980.